Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Cengiz Özyürek, ${ }^{\text {a }}$ Kıvılcım Sendil, ${ }^{\text {b }}$ Tohit Günes, ${ }^{\text {c }}$ Nefise Dilek ${ }^{\text {d }}$ and N. Burcu Arslan ${ }^{{ }^{e} *}$

${ }^{\text {a }}$ Ondokuz Mayıs University, Faculty of Education, Department of Chemistry, 55200, Atakum, Samsun, Turkey, ${ }^{\mathbf{b}}$ Kafkas University,
Arts and Sciences Faculty, Department of Chemistry, 36000, Kars, Turkey, ' ${ }^{\text {c Ondokuz }}$ Mayıs University, Faculty of Education, Science Teacher Programme, 55200, Atakum, Samsun, Turkey, ${ }^{\text {d }}$ Gazi University, Arts and Sciences Faculty, Department of Physics, Teknikokullar, 06500, Ankara, Turkey, and ${ }^{\text {e }}$ Ondokuz Mayıs University, Faculty of Arts and Sciences, Department of Physics, Kurupelit, 55139, Samsun, Turkey

Correspondence e-mail: cozyurek@omu.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.036$
$w R$ factor $=0.079$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
4,4'-Bipyridinium μ-oxo-bis(fluorodioxochromate)

In the cation of the title compound, $\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Cr}_{2} \mathrm{O}_{5} \mathrm{~F}_{2}\right]$, a mirror plane passes through the N atoms of the two pyridine rings and the $-\mathrm{C}-\mathrm{C}-$ bridge connecting them, while the two halves of the anion are symmetry-related across a mirror plane passing through the O atom at the centre of the anion. Chiral chains of the title compound are built up via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds.

Comment

Many structures of chromates and dichromates have been reported, as well as a few cases of trichromates, tetrachromates and polychromates (Pressprich et al., 1988). Chromates may exist as mono-, di-, tri-, tetra- and polymeric forms (Wang et al., 2003; Fouada et al., 1999). It is almost impossible to predict the actual form of these chromium compounds prior to experimental investigation. We report here the structural determination of the title compound (I).

(I)

As seen in Fig. 1, the anion and cation of the title compouind, (I), have mirror symmetry. In the cation, a mirror plane passes through $\mathrm{N} 1, \mathrm{C} 3, \mathrm{C} 4, \mathrm{~N} 2, \mathrm{H} 11$ and H 22 ; in the anion, a mirror plane passes through O3. In the anion of (I), the bridging $\mathrm{Cr}-\mathrm{O}$ bond length $[\mathrm{Cr} 1-\mathrm{O} 3=1.7979(16) \AA]$ is longer than the terminal $\mathrm{Cr}-\mathrm{O}$ bond lengths $[\mathrm{Cr} 1-\mathrm{O} 1=$ 1.606 (3) and $\mathrm{Cr} 1-\mathrm{O} 2=1.594$ (2) \AA]. The average terminal $\mathrm{Cr}-\mathrm{O}$ bond length is 1.600 (3) \AA. The $\mathrm{O}-\mathrm{Cr}-\mathrm{O}$ bond angles range from $106.05(15)^{\circ}$ to $110.59(16)^{\circ}$. The coordination geometry formed by the three O atoms and F atom around each Cr atom is distorted tetrahedral. The other bond lengths and angles in (I) are within expected ranges, and are similar to those reported in other studies (Jin et al., 2004; Ding et al., 2004; Chaudhuri et al., 1997).

The title compound (I) demonstrates a hydrogen-bonded network of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ interactions. There are bifurcated hydrogen bonds between anions and cations (Table 2 and Fig. 2).

Experimental

Chromium (VI) oxide ($20 \mathrm{~g}, 0.2 \mathrm{~mol}$) was dissolved in water (25 ml) in a polythene beaker, and 40% hydrofluoric acid ($11.3 \mathrm{ml}, 0.23 \mathrm{~mol}$)

Received 31 July 2006
Accepted 11 August 2006
was added to it while stirring at room temperature. Within 5 min , a clear solution resulted. To this solution, 4,4'-bipyridine (31.2 g , 0.2 mol) was added slowly with stirring. The compound obtained was left to stand at room temperature for crystallization and, after one day, orange-coloured single crystals suitable of (I) for X-ray diffraction were obtained.

Crystal data

$\left(\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2}\right)\left[\mathrm{Cr}_{2} \mathrm{O}_{5} \mathrm{~F}_{2}\right]$
$M_{r}=380.20$
Orthorhombic, Pnma
$a=20.883$ (3) \AA
$b=12.3458$ (13) \AA
$c=5.0566(5) ~ \AA$
$V=1303.7(3) \AA^{3}$

Data collection

STOE IPDS 2 diffractometer
ω scans
Absorption correction: integration
(X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.524, T_{\text {max }}=0.772$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.079$
$S=0.85$
1495 reflections
109 parameters

$Z=4$

$D_{x}=1.937 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
$\mu=1.71 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, orange
$0.58 \times 0.32 \times 0.15 \mathrm{~mm}$

5320 measured reflections
1495 independent reflections 819 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.066$
$\theta_{\text {max }}=27.1^{\circ}$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.031 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$ 。
$\Delta \rho_{\max }=0.29 \mathrm{e}_{\mathrm{I}}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.29 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$).

O1-Cr1	$1.606(3)$	O3-Cr1 ${ }^{\mathrm{i}}$	$1.7979(16)$
O2-Cr1	$1.594(2)$	$\mathrm{O} 3-\mathrm{Cr} 1$	$1.7979(16)$
$\mathrm{F} 1-\mathrm{Cr} 1$	$1.610(2)$		
$\mathrm{Cr} 1^{\mathrm{i}}-\mathrm{O} 3-\mathrm{Cr} 1$	$127.2(2)$	$\mathrm{O} 2-\mathrm{Cr} 1-\mathrm{O} 3$	$109.38(17)$
O2-Cr1-O1	$110.59(16)$	$\mathrm{O} 1-\mathrm{Cr} 1-\mathrm{O} 3$	$106.05(15)$
O2-Cr1-F1	$109.46(16)$	$\mathrm{F} 1-\mathrm{Cr} 1-\mathrm{O} 3$	$109.98(17)$
O1-Cr1-F1	$111.32(15)$		

Symmetry code: (i) $x,-y+\frac{1}{2}, z$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 11 \cdots \mathrm{~F}^{\text {ii }}$	$0.83(2)$	$2.380(14)$	$2.991(5)$	$131.1(5)$
$\mathrm{N} 2-\mathrm{H} 22 \cdots 3^{\text {iii }}$	$0.83(2)$	$1.87(3)$	$2.678(6)$	$162(5)$
$\mathrm{N} 1-\mathrm{H} 11 \cdots \mathrm{~F}^{\text {iv }}$	$0.83(2)$	$2.380(14)$	$2.991(5)$	$131.1(5)$

Symmetry codes: (ii) $x-\frac{1}{2}, y,-z+\frac{5}{2}$; (iii) $x, y, z-1$; (iv) $x-\frac{1}{2},-y+\frac{1}{2},-z+\frac{5}{2}$.

The N-bound H atoms were located in a difference Fourier map and refined freely. The other H atoms were positioned geometrically and refined using a riding model approximation, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: X - $A R E A$ (Stoe \& Cie, 2002); cell refinement: X $A R E A$; data reduction: $X-R E D 32$ (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular

Figure 1
View of structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (a) x, $\frac{1}{2}-y, z$.]

Figure 2
The packing of (I), viewed along the c axis. Dashed lines indicate hydrogen bonds.
graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F. 279 of the University Research Fund).

References

Chaudhuri, M. K., Chettri, S. K., Dey, D., Mandal, G. C., Paul, P. C. \& Kharmawphlang, W. (1997). J. Fluorine Chem. 81, 211-213.
Ding, C.-R., Jin, Z.-M., Wang, H.-B., Hu, M.-L. \& Lin, H. (2004). Acta Cryst. C60, m203-m204.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Fouada, N. E., Halawyb, S. A., Mohamed, M. A. \& Zakid, M. I. (1999). Thermochim. Acta, 329, 23-29.
Jin, Z.-M., Zhang, H.-M., Wang, H.-B., Hu, M.-L. \& Shen, L. (2004). Acta Cryst. C60, m572-m574.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

metal-organic papers

Pressprich, M. R., Willett, R. D., Poshusta, R. D., Saunders, S. C., Davis, H. B. \& Gard, G. L. (1988). Inorg. Chem. 27, 260-264.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Stoe \& Cie (2002). X - A REA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany
Wang, Y., Ohishi, Y., Shishido, T., Zhang, Q. H., Yang, W., Guo, Q., Wan, H. \& Takehira, K. (2003). J. Catal. 220, 347-357.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

